"So You Think You're Funny?": Rating the Humour Quotient in Standup Comedy Anirudh Mittal, Pranav Jeevan P, Prerak Gandhi, Diptesh Kanojia and Pushpak Bhattacharyya

The 2021 Conference on Empirical Methods in Natural Language Processing

Motivation

Can a computer understand humor?

Standup comedy is a permutation and combination of words that elicit humor NLP is the science that can measure that

TARS in Interstellar- manually change degree of humour in robot

What are we doing differently?

Automatic humour rating (non-binary)

First multi-modal dataset for standup comedy (using audio and text)

Scoring mechanism for funniness from audience feedback

Dataset - Open Mic

- Over **40 hours** of English standup comedy audio from 36 shows of 32 comedians
 - 927 two minute stand up audio clips
- For unfunny data, we used TED talks
 - **128** two minute TED talk audio clips
- Diverse genders, nationalities, cultures
- Audio divided into smaller **independent clips** of about 2 mins.
- Corresponding transcript stored
- **1055** data points in Dataset

Data preparation

Overview

Input and Output

Funniness score

		Rating	# Clips	Scoring Criteria
 Extract the audience laugh and fir 	nd its length	4	233	score > μ + 0.75 σ
• For any clip,		3	185	$\mu + 0.75\sigma \ge \text{score} > \mu$
		2	256	$\mu \geq \mathrm{score} > \mu$ - 0.75 σ
Normalised score = $\frac{\sum \text{ length of all audience}}{\sum \text{ length of all audience}}$	e laughter in the clip	1	253	μ - 0.75 $\sigma \ge$ score $>$ 0
Length of	f the clip	0	128	score = 0

• Norm scores are then compiled and the classes are assigned as shown in table

Table 1: Number of clips and the scoring criteria for assigning humour rating to each clip based on the mean (μ) and standard deviation (σ) of the scores

Note: The TED data was directly assigned to class 0 as it doesn't contain any laughs.

Source: Jon Gillick and Marcin Wlodarczak. 2019. laughter- detection.

Humor annotation

Validation of scoring mechanism

Pairwise Agreement				
Annotators A and B	0.643			
Annotators B and C	0.926			
Annotators C and A	0.611			
Average pairwise Cohen's Kappa	0.634			
Fleiss' Kappa	0.632			
Krippendorff's alpha	0.632			

Table 2: Inter-Annotator Agreement (Fleiss' Kappa and Krippendorff's alpha) values along with pairwise agreement among the annotators

Annotaters	QWK
Human A	0.659
Human B	0.562
Human C	0.563
Average	0.595

Agreement of human annotation scores with the automatic scoring mechanism

Source: Jacob Cohen. 1968. Weighted kappa: Psychological bulletin, 70(4):213

Muting laughter

Source: Jeff Green. 2018. Sitcom laughtrack mute tool

Network Architecture

Figure 1: Neural Network Architecture

Audio features

- Features:
 - 1. MFCCs
 - 2. RMS energy
 - 3. Spectogram
- Information about the speech:
 - 1. Volume
 - 2. Intonation
 - 3. Emotion of the speaker
- 33 dimension vector for each time sample
- Maximum sequence length for audio embeddings = 8000

Source: Brian McFee et al. 2020. librosa/librosa: 0.8.0.

Textual features

Convert text i.e. Content to vectors for the model

Methodology

Results

Textual Features	QWK
GloVe	0.691
BERT_{base}	0.722
$BERT_{large}$	0.796
DistilBERT	0.721
RoBERTa _{base}	0.775
RoBERTa <i>large</i>	0.813
XLM	0.714

RoBERTa_{large} outperforms all the other language models. This is because it is **pre-trained** on datasets that contain text in a **story-like** format similar to stand-up comedy text.

RoBERTa_{large} and **BERT_{large}** can distinguish different **levels of humourousness** quite well and they show the highest accuracy in identifying the **non-funny clips**. A larger neural network would need a dataset of significant size to train which shows that our dataset is reasonably sized.

Error analysis

- In cases of error in assigning ratings to the intermediate funny clips (2-3), the assigned ratings are not off by more than one rating point which correlates with human annotators' incorrect predictions among classes 2-3 and 3-4.
- Most misclassified clips by the model belong to the following categories:
 - Sarcasm and irony
 - Morbid jokes/Dark humour
 - Metaphoric comparisons
- Misclassification among annotators arises due to subjectivity towards topics such as:
 - Country-specificity
 - Bias against country/race
 - Insensitivity towards females

*The last point is validated by observing that such clips are consistently less scored by Annotator A (female) than Annotator B and C (males)

Conclusion

We train a machine learning model to predict funniness of a standup comedy clip given its audio and text.

We train several textual embeddings to compare accuracy.

We also release our dataset for further analysis called Open Mic.

THANK YOU