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• Eye-tracking is a means of using cognitive 

information for solving different language 

processing and understanding tasks that 

sometimes require interpretation of semantic and 

pragmatic aspects of language processing.

• Eye-tracking research is based on the Eye-Mind 

hypothesis :

• “There is no appreciable lag between what is fixated 

and what is processed.”

• Just and Carpenter (1980)

• Example: Sarcasm Understandability (Mishra et 

al. (2017)

1. Interest Area: An interest area is the area of the

screen which is of interest.

2. Fixation: An event where the eye focuses on a

part of the screen.

3. Saccade: The movement of the eye from one

fixation point to the next.

– Progression: Saccade from the current interest

area to a later one.

– Regression: Saccade from the current interest area

to an earlier one.

Gaze behaviour corpora is available in multiple

languages:

And for solving multiple tasks (examples shown are

in English):

Collecting gaze behaviour data is expensive in

terms of time and money. A solution is to learn

gaze behaviour from existing corpora.

1. Predicting Fixations While Reading

– Nilsson and Nivre (2009) detect fixated tokens using

a transition-based approach.

– Matthies and Sogaard (2013) use linear CRF model

2. Predicting Grammatical Functions

– Barrett and Sogaard (2015) use logistic regression

to learn gaze data to predict the grammatical

functions of tokens in a sentence.

3. Text Simplification

– Klerke et al. (2016) use a MTL approach to learn

gaze behaviour and compress sentences.

4. Part-of-Speech Tagging

– Barrett et al. (2016a) use type aggregation to learn

gaze behaviour for PoS tagging.

– Barrett et al. (2016b) do the same as Barrett et al.

(2016a) but in a cross-lingual setup.

5. Readability

– Gonzalez-Garduno and Sogaard (2018) predict

readability using MTL, learning gaze behaviour from

the Dundee Corpus (Kennedy et al. (2003).

6. Sentiment Analysis

– Mishra et al. (2018) use MTL to learn gaze

behaviour and PoS tagging as auxiliary tasks to aid

in sentiment analysis.

7. Sequence Classification

– Barrett et al. (2018) use MTL to learn gaze

behaviour while solving sentiment analysis, grammar

error detection, and hate speech detection.

8. Named Entity Recognition

– Hollenstein and Zhang (2019) use type aggregation

of gaze features from the Dundee Corpus to aid in

named entity recognition.
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SaccadeFixationInterest Area

Detecting 

sarcasm is very 

easy ;)

Dataset Language Stimulus Subjects

Zang et al. (2018)
Chinese

90 sentences 35

Li et al. (2018) 15 documents 29

Cop et al. (2017)
Dutch

1 novel 33

Mak & Willems (2019) 3 stories 102

Kennedy et al. (2003) French 20 documents 10

Nicenboim et al. (2016) German 176 sentences 72

Kleigl et al. (2004) 144 sentences 55

Safavi et al. (2016) Persian 136 sentences 40

Laurinavichuyte et al. (2017) Russian 144 sentences 96

Nicenboim et al. (2017) Spanish 212 sentences 79

Dataset Task Stimulus Subj.

Joshi et al. (2014) Sentiment Analysis 1059 sentences 5

Mishra et al. (2016) Sarcasm Understanding 1000 Tweets 7

Cheri et al. (2016) Coreference Resolution 22 documents 14

Mishra et al. (2017) Reading Complexity 32 documents 16

Mathias et al. (2018) Text Quality Prediction 30 documents 20

Learning Gaze Behaviour

• 2 learning approaches:

• Type aggregation – For a given token (T), the value

of the corresponding gaze behaviour feature’s value

(F) is the mean value of that feature for the token,

across the corpus.

• Multi-Task Learning (MTL) – Learning gaze

behaviour features are auxiliary tasks while solving

the NLP problem is the primary task.

Normalizing Gaze Behaviour

• Readers read at different speeds. So data must

be normalized.

• Min-Max Normalization – For a given reader,

normalize the feature values of each feature to the

range of [0,1].

• Binning – For a given reader, assign the feature

value to a given bin for each gaze behaviour feature.

Further Proposed Applications

1. Complex Word Identification (CWI)

– Complex word identification is deciding whether a

word / phrase is complex or not in the given context.

– Fixation lengths will be longer for complex words, as

compared to simple words.

– Predicting the dwell time / fixation durations can help

in identifying complex words.

2. Automatic Essay Grading (AEG)

– Automatic essay grading is using a machine to

assign a score to an essay written by a human.

– Mathias et al. (2018) showed that using gaze data

helps a lot for predicting the text quality rating given

by a reader to the text.

– Gaze behaviour can be learnt, using either type

aggregation of multi-task learning, as an auxiliary

task, and the learnt gaze behaviour would then be

used to aid in automatically scoring the essay.


